stMind

about Arsenal, Arsene Wenger, Tech, Computer vision and Machine learning

CourseraのDeep Learning SpecializationのCourse2まとめ

www.coursera.org

引き続き、Deep Learning SpecializationのCourse2を受講しました。Course1では日本語訳がありましたが、Course2では英語字幕(時々誤り有り)のみで、仕事で頭を使ってから帰った後で取り組むのは難しいものがありました。結局、週末に一気に仕上げる感じでしたが、Course2もCourse1と同様で、具体的なケースで基本の説明、なぜworkするかの理由が説明されるので、すいすいと進めることが出来たように思います。

Course2振り返り

Week1, Week2, Week3の構成で、特にWeek1が他の二つに比べて大ボリュームで盛りだくさんでした。自分のCoursera学習スタイルは、

  • Videoは、重要なスライドをEvernoteに画像で貼り付け、解説を聞いて自分なりにまとめた説明とともにノートに保存
  • ノートにはタグ付けして、QuizとProgramming assignmentに取り組むときに、忘れた内容があったらタグ検索して参照

という感じで、今回のCourse2では約30のノートが出来ました。

基本的にはこれまでに一度は聞いたことのある概念(Regularization,Batch Normalizationなど)なのですが、なぜRegularizationがOverfittingを防ぐのか?Batch Normalizationは何をしているのか?などの理解が、複雑な数式なしに深めることが出来たと感じています。Course1と合わせて、Deep Learningの基本理解はこのCourse2まで受講すれば十分だと思えるくらいの濃い内容のコースでした。